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This paper proposes a combined multipole-series representation and integral-equa- 
tion method for solving the low-Reynolds-number hydrodynamic interaction of a 
finite sphere a t  the entrance of a circular orifice. This method combines the flexibility 
of the intergral-equation method in treating complicated geometries and the accuracy 
and computational efficiency of the multipole-series-representation technique. For 
the axisymmetric case, the hydrodynamic force has been solved for the difficult case 
where the sphere intersects the plane of the orifice opening, which could not be treated 
by previous methods. For the three-dimensional case, the first numerical solutions 
have been obtained for the spatial variation of the twelve force and torque correction 
factors describing the translation or rotation of the sphere in a quiescent fluid a t  a 
pore entrance or the Sampson flow past a fixed sphere. Restricted by excessive 
computation time, accurate three-dimensional solutions are presented only for a 
sphere which is one-half the orifice diameter. However, based on an analysis of the 
behaviour of the fade and torque correction factors for this case, approximate 
interpolation formulas utilizing the results on or near the orifice axis and in the far 
field are proposed for other diameter ratios, thus greatly extending the usefulness of 
the present solution. 

1. Introduction 
The motion of particles and macromolecules at the entrance to filters and 

membranes is a problem of long-standing interest in aerosol and filter technology, 
osmotic phenomena and the filtration of particulates in whole blood. Prominent 
examples are : the plasma screening effect of red cells entering small blood vessels or 
glass tubes; osmotic flow a t  the pore opening of semi-permeable or partially 
permeable membranes ; the molecular sieving of macromolecules in the loading of 
plasmalemma vesicles ; the interaction of micron-sized particles with the entrance 
geometry of a nucleopore filter ; the entrance of highly deformable particles into pores 
such as in red-blood-cell deformability tests. 

Because of the hydrodynamic interaction between the particle and the pore wall, 
the hydrodynamic resistance experienced by the particle can differ substantially 
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FIGURE 1 .  The entrance geometry. 

from the Stokes resistance of a particle in an unbounded fluid. The correction factors 
for the hydrodynamic force and torque vary with the position and with the direction 
of motion. Consequently, the neutrally buoyant velocity of the particle will differ from 
the velocity of the fluid surrounding it and the particle diffusivity is no longer a scalar 
but a second-order tensor (e.g. Brenner & Gaydos 1977). The three-dimensional 
hydrodynamic analysis of the motion of a finite neutrally buoyant particle towards 
a pore is an essential input in all the problems involving entrance phenomena 
mentioned above. 

The hydrodynamic interaction of a particle at the entrance to a finite-length pore 
may be approximately modelled by considering a sphere in one ofthe two semi-infinite 
half-spaces which are connected by a circular orifice in an infinitesimally thin plane 
wall (figure 1) .  As already demonstrated by the exact solution of Dagan, Weinbaum 
& Pfeffer (1982a), the flow in the exterior half-spaces is not significantly affected by 
the length of the pore. The Reynolds number based upon the sphere or orifice radius 
in these applications is very small so that the Stokes approximation of creeping flow 
is valid. Even with such approximations, this problem remains analytically 
intractable using the standard weak-interacton techniques such as the method of 
reflections, which has been shown to converge very slowly when the sphere-wall 
spacing is of the order of five sphere radii or less (Ganatos, Weinbaum & Pfeffer 1982). 
To attack such problems with strong hydrodynamic interactions, two numerical 
theories, the multipole-series-representation technique and the integral-equation 
method, have been developed in recent years. 
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The multipole-series-representation technique was first developed by Gluckman, 
Pfeffer & Weinbaum (1971) for unbounded axisymmetric flow and later extended to 
axisymmetric bounded flows (Leichtberg, Pfeffer & Weinbaum 1976 ; Dagan et al. 
1982a) and to  three-dimensional unbounded and bounded flow (Ganatos, Pfeffer & 
Weinbaum 1978, 1980; Ganatos et al.  1982). I n  this technique the disturbance due 
to a finite sphere is represented by a truncated series of internal multi-lobular 
disturbances and the coefficients in the series are determined by the boundary 
collocation method. Recently, Dagan, Weinbaum & Pfeffer (19823) applied this 
technique to the entrance problem of the on-axis motion of a finite sphere approach- 
ing a circular orifice. They obtained accurate solutions for the hydrodynamic resist- 
ance when the sphere was located a t  least 1.1 times the sphere radius from the orifice 
plane. I n  their solutions different stream functions are constructed for the two half- 
spaces (figure 1) in terms of the unknown velocity profile a t  the orifice opening. The 
ability to analytically match the two kinematic (velocity) and dynamic (stress) fields 
and uniquely determine velocity profile in the plane of the orifice was crucial for 
their successful application of the multipole-series technique. This solution method 
precludes the case where the sphere partially enters the orifice. The same authors, 
Dagan, Weinbaum & Pfeffer (1983). also tried to extend this technique to the 
three-dimensional pore-entrance case. However, for this case the analytical satisfa- 
ction of dynamic continuity at the orifice proved too difficult and, therefore, they 
developed only an approximate model in which the rotation of the sphere and the 
transverse curvature effect of the orifice were neglected. Their results predicted for 
the first time the deviation of the trajectory of a neutrally buoyant sphere from the 
undisturbed fluid streamlines due to the hydrodynamic interaction with the entrance 
geometry of the orifice. These predictions were verified by experiment, and their 
theory is shown to be accurate provided that the particle centre is at least two 
orifice-radii away from the orifice opening. 

I n  the integral-equation method, the velocity disturbance generated by the 
boundaries in the flow field is represented by the integrals of singularities distributed 
over the boundary surfaces (Ladyzhenskaya 1963). The application of the no-slip 
conditions on all surfaces, either by the collocation method (e.g. Youngren & Acrivos 
1975) or by the weighted-residual technique (Lewellen 1982), leads to  a set of 
Fredholm’s integral equatons for the unknown densities of the singularity distribu- 
tions. This method has been applied to  Stokes flows past a particle of arbitrary shape 
(Youngren & Acrivos 1975). a gas bubble (Youngren & Acrivos 1976) and a 
deformable viscous drop (Rallison & Acrivos 1978), and to the motion of an 
arbitrarily positioned sphere in the flow inside a circular cylindrical pore (Lewellen 
1982). This method has also been extended to  creeping flows with an infinite 
deformable fluid-fluid interface (Lee & Leal 1982; Leal & Lee 1983). The singularities 
are distributed over both the finite particle surface and the infinite confining 
boundary, but the infinite domain of integration is truncated. This very general 
method so far has not been applied to problems with discontinuous boundaries such 
as the pore-entrance geometry. 

I n  comparison, the multipole-series technique is very efficient and highly accurate 
for a finite body that conforms to  some orthogonal coordinate system. However, the 
application of this technique to bounded flow requires the analytical satisfaction of 
the boundary conditions on the infinite confining boundaries, a really formidable task 
for many problems including the present one. I n  contrast, the integral-equation 
method is very flexible in treating boundaries of arbitrary shape including infinite 
boundaries. I n  addition, this method is especially suitable for deformable boundaries 
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because the local stress force on the surfaces, which is identified as the density of the 
Stokeslet distribution, is obtained as part of the solution. The drawbacks of this 
method lie in the lower accuracy and the longer computation time compared with 
the multipole-series technique. I n  this study we try to  combine the two methods to 
make better use of each other’s advantages. 

As a precursor to the combined multipole-series/integral-equaton method devel- 
oped herein for three-dimensional motion the authors first attempted a straight- 
forward numerical solution of integral equation (8) (see $2.1)  for the axisymmetric case 
where the accuracy of the results and the efficiency of the methods could be compared 
with the highly accurate results of Dagan et al. (1982b). This comparison, which is 
described in $2.2, shows that for a rigid sphere the combined method based on ( 9 )  
is both more accurate and a t  an equivalent level of truncation requires an order of 
magnitude less computational time than a direct integral-equation solution. The 
authors have also examined the possibility of constructing a fundamental three- 
dimensional solution for a point force in Sampson’s flow through an orifice following 
the related approach developed by Miyazaki & Hasimoto (1984) for a translating 
infinitesimal particle in a quiescent fluid. The complexity of this solution appeared 
to preclude its convenient use in an integral representation of the disturbance 
produced by a finite sphere. The present solution approach is also capable of treating 
the more difficult case where the sphere arbitrarily intersects the plane of the orifice 
opening. To our knowledge the present solutions are the first to describe this more 
difficult flow geometry. 

Even with the efficiencies gained by the new combined approach, the three- 
dimensional solutions for the twelve force and torque coefficients are still very time 
consuming and thus accurate numerical results for all these coefficients have been 
obtained only for a sphere-orifice diameter ratio of one half. However, based on these 
accurate solutions and the asymptotic results valid on the orifice axis and in the far 
field, approximate interpolation formulas have been developed for the full range of 
particle sizes and positions. These formulas have already been used to  describe the 
fine structure of osmosis at the entrance and exit of permeable and aemi-permeable 
membrane pores (Yan, Weinbaum & Pfeffer 1986) and to  develop a new theory for 
the collection efficiency of nuclepore filters which takes account of hydrodynamic and 
nuclepore-wall force interactions (Wang et al. 1986). 

I n  $ 2 a combined series-integral representation of the disturbance velocity field 
will be derived for our entrance geometry; the axisymmetric and the three-dimen- 
sional solutions will be presented in §$3 and 4 respectively; $5 will briefly discuss the 
virtues and limitations of the present method. 

2. Formulation 
I n  figure 1 all the lengths are scaled relative to  the orifice radius R,. Two Cartesian 

coordinate systems are used: (x, y, z )  is associated with the orifice and ( X ,  Y ,  2) with 
the sphere. For convenience, a cylindrical coordinate system (R, $, z )  associated with 
the orifice and a spherical system ( r ,  8, @) associated with the sphere are introduced. 

For a creeping flow, the dimensionless Stokes equations are 
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Here and henceforth the Einstein’s convention of summation over repeated indices 
is adopted and (xl, x2, x3) represent (x, y, 2). The fluid velocity is made dimensionless 
with respect to an arbitrary characteristic velocity U,  and the fluid pressure p with 
respect to a characteristic viscous stress ,uU,/R, where ,u is the viscosity of the fluid. 

Owing to the linearity of the governing equation ( l ) ,  the general motion of the 
sphere in the symmetry plane (x, z )  in zero-Reynolds-number flow can be constructed 
as the superposition of (i) a pure translation of the sphere with velocity (U,, 0, U,) 
in a quiescent fluid; (ii) a pure rotation of the sphere with angular velocity fl about 
the Y-axis in a quiescent fluid; and (iii) the flow past a stationary sphere with 
undisturbed velocity components Vx and V,, which obey Sampson’s solution (see 
(7a-c), a t  the sphere centre ( -xo, 0, -2,). The hydrodynamic force and torque on the 
sphere can be written as 

( 2 )  1 Fx = 67c,ua( Ux Ft; + U,  F2 + aS2Fi + V,, PS,), 
F, = 67c,ua( U, F2 + U, F;  + aOF: + V,, PE), 
Ty = 8 n , u a 2 ( U x T ~ x + U , T ~ Z + a l n T ~ + V , o ~ ~ ) ,  

where V,, is the flow velocity at the centre of the orifice opening and will be given 
by (21 b )  ; F> ,, F:, . . . , py are twelve force and torque correction factors obtained from 
the solutions of the three separated problems mentioned above, with the superscripts 
t , r , s  denoting the three problems in sequence. These factors account for the 
hydrodynamic interactions between the sphere and the orifice entrance geometry. 
For a neutrally buoyant sphere carried by the flow, these equations with 
F, = F, = Ty = 0 yield three relations to determine U,, U, and a. 

Now let us mathematically formulate the problem in order to determine the force 
and torque correction factors. 

2.1. Integral representation 
Ladyzhenskaya (1963) derived a Green’s formula for Stokes flow as follows: 

{ V,W) qj [~”(x ,~ ) I  n j ( ~ )  - u i k ( x , ~ )  T , j [  V(Y)I nj(Y)> dSy, (3) 

Here V,(x) and p ( x )  are the actual solutions to ( 1 )  for a field point x and u ; ( x , y )  
and p k ( x , y )  are the solutions at the field point x due to a fictitious Stokeslet (point 
force) in the kth direction at  point y .  These solutions are given by 

where rxy = Ix-yl and Sik is the Kronecker delta. q j [ u ( y ) ]  and !&[uk(x,y)] represent 
the stress tensors associated with V ( y )  and &(y) respectively: 
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and ni is the exterior normal vector (with respect to the flow field 0) to the boundary 
352 and therefore points inward from the body surface. The subscript y in dS, and 
d52, indicates that the integrations are to be performed over y .  With the help of the 
Green’s formula the flow velocity V ( x )  can be expressed in terms of the so-called 
single- and double-layer potentials Vil)(x) and Vi2)(x)  : 

(5a )  &(x) = VJl)(x) + VjZ)(x), 

represents the actual local stress force in the k-direction. It has been shown that, if 
352 is a Lyapunov surface, the single-layer potential Vbl)(x) is continuous in SZ and 
i3Q but the double-layer potential Viz)(x) undergoes a discontinuity across 852 : 

The factor $ applies only for smooth surfaces. 
It is noted that ( 3 )  is derived under the assumption that both V ( x )  and p ( x )  

should vanish at infinity. Therefore i t  cannot be applied directly to our flow in figure 
1 ,  where p ,  and p- ,  may be different. This difficulty is easily eliminated by 
decomposing the present problem into the sum of Sampson’s solution for a flow 
through a circular orifice (with superscript S) and a remaining disturbance (primed 
quantities), where both V ( x )  and p’ (x )  vanish at infinity, namely 

V J x )  = q x )  + Vi(x ) ,  

p ( x )  = P S W  + P ’ W  

The Sampson solution is given as (Happel & Brenner 1973, p. 153) 

Here the dimensionless volume flux q is related to the pressure difference ( P - ~  -pm) 
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and the oblate spheroidal coordinates ( A ,  c)  are related to the cylindrical coordinates 
(R, 4 ,  x ) ,  as follows: 

P = 8P- ,  - P m L  ( 7 4  

A = [+(R, + R2)’ - 11, (7 e )  

5 = [1 -+(R2-R,)2], (7 f  1 
(7 9 )  

(7 h )  

R, = [zZ + ( R  - l)’]:, 

R, = [ x 2 +  (R+ l)’]:. 

Now the Green’s formula (3) can be applied to the disturbance field V ( x )  andp’(x). 
The plane wall of the orifice as shown in figure 1 has no definite tangent plane at  the 
edge of the orifice and, therefore, is not a Lyapunov surface as required in deriving 
equation (3).  However, the flow field in figure 1 can be divided by the orifice opening 
and wall into two semi-infinite regions and then the boundary of each region consists 
of Lyapunov surfaces. Applying the Green’s formula (3) to each region and then 
adding the resulting integral expressions, we obtain 

r r  

where 8, denotes the sphere surface, and the density function f bw)(y) in the single-layer 
potential on the plane wall S,- represents the stress difference across the wall: 

fiw)(y) = ~ ~ ~ ’ [ V ‘ ( y ) ] - ~ ~ ’ [ ~ ( y ) ] ,  k = 1,2 ,3 .  ( 8 b )  

Note that no double-layer potential on the plane wall S,- appears in equation (8a) 
because the V ( y )  is identically zero on 8, - . The second integral in @a) ,  although 
known, can be converted into a single-layer potential and combined with the first 
integral following the procedure in Rallison & Acrivos (1978). One defines a fictitious 
fluid motion inside the sphere with velocity V ( y )  on X,, relates the single- and 
double-layer potentials for this problem, absorbs the former into the first integral in 
(8a)  and redefines the unknown stress distribution. Since an alternative expression 
for the first two integrals in ( 8 a )  will be used, we shall not pursue this simplification 
further. 

Equation ( 8 a )  is a unified expression, valid for any point x in the flow field. There 
is furthermore no restriction on the position of the sphere centre. This will enable 
us to find the solution even if the sphere intersects the orifice opening, while such 
cases could not be treated by any previous method. 

2.2. The combined multipole-serieslintegral representation 
While the integral equation (8a)  could be solved numerically to  determine the 
unknown stress functions TL$( V‘(y)) and fLw)(y) by satisfying the no-slip boundary 
conditions on S, and S, - , the approximations used to represent these functions 
usually produce considerable inaccuracy in calculating the force and torque, which 
are our primary goals. On the other hand, in a variety of applications using the 
multipole-series truncation technique, Lamb’s spherical harmonic-series solution 
provided high accuracy in evaluating the force and torque coefficients using relatively 
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few terms in the series truncation (Weinbaum 1981). The multipole-series repre- 
sentation provides the important additional advantage that each force and torque 
coefficient can be expressed in terms of a single unknown constant coefficient in the 
series (see (10a, b )  below). In  contrast, for the orifice wall there is no convenient set 
of fundamental eigenfunctions which can be used to analytically satisfy the boundary 
conditions on the surface of the orifice for three-dimensional motion as was done in 
Dagan et al. (1982 b )  for axisymmetric flow. 

To test these ideas preliminary calculations were first performed for the simpler 
axisymmetric problem where the results could be compared with the accurate series 
solutions in Dagan et al. (19826) where the boundary conditions on the orifice wall 
are satisfied exactly. Two solution approaches were tried, one where the integral 
equation (8) was solved numericallly and one where a series of cylindrically 
symmetric eigenfunctions derived from (9a )  below was used to represent the 
disturbance produced by the sphere. The second solution procedure is described in 
detail in $2.3. The integral describing the disturbance produced by the wall was 
treated the same in both cases. The solutions using both methods are compared in 
table 1 with the results in Dagan et al. (1982 b )  both for a sphere moving in a quiescent 
fluid and for Sampson’s flow past a stationary sphere. M ,  refers to the number of 
equal segments of generating arc into which the sphere was divided when integral 
equation ( 8 a )  was solved or the number of terms retained in the series representation 
when (9a )  was used. N2 is the number of radial divisions used for the orifice wall. It 
is clear from the results in table 1 that better accuracy could be obtained using a 
significantly smaller value of M ,  when the sphere was represented by the multipole 
series. Furthermore, the computation time using ( 8 a )  was 5 to 10 times longer than 
the computation time using (9a) .  For the much more complicated three-dimensional 
case we have every reason to expect that the method using (9a )  will be far superior 
to that using (Sa).? 

In  view of the above arguments, we shall represent the disturbance on the sphere 
surface by Lamb’s series solution, instead of the first two integrals (the hydrodynamic 
potentials on Sp) in ( S a ) ,  while retaining the third integral (the single-layer potential 
on Sw-) in (8a )  to represent the disturbance on the orifice wall. This would enable 
us to evaluate the force and torque on the sphere with higher accuracy while avoiding 
the difficulty of analytically satisfying the boundary conditions on the orifice wall. 
We thus replce ( 8 a )  by 

V;(x)  = X x [B,, Bg)n(r, 8 , @ )  +Cmn Cg)fl(r ,  8, @ ) + E m ,  Eg)n(r, 8, @)I 
m n  

n=1 m=o 

where 

t This conclusion is only valid for rigid spheres where there is no discontinuity in velocity 
boundary conditions on the sphere surface. For the axisymmeteric low-Re motion of a bubble with 
a stagnant cap of surfactants in an unbounded fluid it is evident from the comparison of the exact 
solution of Sadhal & Johnson (1983), with the truncated spherical harmonic series of Davis & 
Acrivos (1966) that the spherical harmonic series is not an efficient representation for this case. 
The first author has recently completed in conjuction with Z. Dagan and H. Shan a study of the 
axisymmetric motion of a gas bubble or a bubble with a stagnant surfactant cap towards an orifice. 
In this study it was more efficient to solve the integral equation (8a )  numerically rather than ( 9 ~ ) .  
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F4 for a moving sphere in quiescent fluid 

a/R, = 0.1 a/R,  = 1.0 a/R, = 10.0 
z,/a ( 8 a ) t  (9a) l  Daganll (8a) (9a) Dagan (8a) (9a) Dagan 

10.0 -1.086 -1.073 -1.060 -1.125 -1.126 -1.126 -1.126 -1.125 -1.125 
5.0 -1.084 -1.067 -1.053 -1.280 -1.281 -1.280 -1.284 -1.284 -1.285 
2.0 -1.061 -1.054 -1.051 -1.871 -1.865 -1.806 -2.123 -2.125 -2.125 

FZ for Sampson's flow past a stationary sphere 

10.0 0.5470 0.5344 0.5280 0.01 108 0.01 1 10 0.01 109 0.000 113 0.000 112 0.000 112 
5.0 0.8800 0.8485 0.8380 0.05046 0.049 18 0.04860 0.000529 0.000513 0.000508 
2.0 1.0420 1.0069 1.0036 0.4446 0.3593 0.3275 0.00666 0.00565 0.00566 

TABLE 1. Comparison of the axisymmetric results for a solid sphere 

t Using equation @ a ) ,  with M ,  = 25, N ,  = 20; Yan, Shan & Dagan (1987). 
$ Using equation (9a), with M ,  = 4-10, N ,  = 14-20 (the present paper). 
1 1  Dagan et al. (1982b). 
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Here Pr(E) is the associated Legendre polynomial. The introduction of the Lamb's 
series reduces the amount of numerical integration considerably. The evaluation of 
the force and torque on the sphere is also simplified since these can be related to the 
lowest-order coefficients in the spherical harmonic series : 

(10a) 

(106) 

Vi(r  = a )  = V;@)(B, @), (on Sp); (1la) 

Vi(R 2 1 ,  z = 0) = 0, (on 8,-); ( 1 1 6 )  

where V p ( I 3 ,  @) = ri,+aa cos8- %(a, 0, @), ( I l c )  

V ; ( p ) ( O , @ )  = Uz-aDsin13cos@-~(a,e,@). ( 1 1 4  

F = - 47r(E1, i + E,, k) , 
T = - 8xB,, j .  

The no-slip conditions on the sphere surface and orifice wall are 

V",(x) and c(x) are evaluated by (7a ,  b ) ;  U,, U, and D are the translational and 
angular velocities of the sphere. In  the next two subsections we shall discuss how to 
apply these boundary conditions for the axisymmetric and three-dimensional cases, 
respectively, to determine the unknown function f Lw)(y) and the unknown coefficients 
B,,, C,, and Em, in (9a) .  

2.3. The collocation technique 

For the axisymmetric case we apply the no-slip conditions a t  M ,  discrete points on 
the sphere surface Sp and at N2 points on the plane wall S,  - . All the points are located 
in the same meridian plane, for convenience take $ = @ = 0. Owing to the axial 
symmetry, the unknown f iw)(y) is of the following form : 

(12) -1 f !"'W =f& cos6 

f $ ) ( y )  = f&) sin 6, 
f hW)W = f z ( &  

where fR(B)  and fz(& are unknown functions of a and y = ( E ,  6 , O )  is the location 
of the Stokeslet on S, - . In  (9a) ,  only t,he terms with m = 0 in the series are retained 
for the axisymmetric case. Note that B%),(r, 13, @) = 0 when m = 0. The integral 
equations that result after the no-slip conditions are applied cannot be solved 
analytically for fR(R) ,  f,(a), Con and Eon. To reduce the integral equations to a set 
of linear algebraic equations, which can be solved numerically, we first truncate the 
infinite domain of integration 1 < < co on S,- into a large finite region 
1 < 2 < R, and then divide this region into ( N 2 - 2 )  intervals (8n-l,l?n), assuming 
that 

R, = 1.0; 8, = +(R,+R,+,) for n = 2,3,  ..., N 2 - 2 ;  RNz-,  = R,; (13) 

where 1 < R, < R, < ... < RN2 < R, are radial coordinates of the chosen collocation 
points on the orifice plane. For each of the intervals, the unknown f R ( @  and f,(a) 
are approximated by the piecewise quadratic interpolation : 

when 
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Here fk(@ can be either f,(@ or f,(a) and the coefficients A?), B?), C?) can be 
determined from the condition that fk(& = f,(R,) at il= R,. With (14) substituted 
into the integral equation and the series in ( 9 a )  truncated to n < M I ,  the no-slip 
conditions, when applied a t  the designated collocation points on S, and S,- , yield 
the following linear system of equations ( i  = 1 and 3 only) : 

M *  
'c LC,, CfA(a, O,, 0) +Eon EfA(a, O p ,  O ) ]  

n=1 

I N,-1 3 

Gin,"(R, $, z )  = As;") HIi)(R,  $, a ;  a,-,, Bn; 0)+B?) Hi;) (R,  $, Z ;  R,-,, Bn;  0) 

+C?'@:)(R,$,z; Jt^n-l,R^,; 0); (16b) 

HjFf,!B)(R, $, z ;  b,, b, ; 06) 

] cosm$ zfldq%da, whenj  = 1 or 3;  

] sinm$ 8 P d 6 d 8 ,  whenj  = 2. 

(16c) 

Equations (15a,  b )  constit,utc. 2(Ml + LV~) equations, which can be solved for the 
2(2c1,+N2) unknowns: Con, Eon ( n  = 1,2, ..., M I )  andf,(R,),j,(R,) ( n  = 1,2, ..., N 2 ) .  
The force and torque on the sphere are then found from (lOa, b) .  

The most tedious and time-consuming part of this work is the evaluation of 
integrals q F ( R ,  $, a ;  b,, b,; ,nb) as defined by (16c) .  For example, if we take M ,  = 10 
and N ,  = 20, then we have to evaluate 18(M1+ N , )  ( N 2 - 2 )  = 9720 such integrals. 
Fortunately, the integration over 4" can be performed analytically and the results 
expressed in terms of complete elliptic integrals. For the collocation points on 8, - 
(where z = O), we are also able to perform the integration over a analytically by 
expanding the elliptic integrals into various power series of their modli or comple- 
mentary moduli. For the collocation points on S,, part of the integration over has 
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to be carried out numerically. In either case H::)(R, $, z ;  b,, b,; m) can be expressed 
in the following forms: 

I g$(R; b , ,b , ;  m,P)  cosmq5+g&(R; b , ,b , ;  m,P)  cos(m-k)$ 

when i = 1 or 3 ;  
g$(R ; b,, b, ; m, p) sin mq5 + ge(R ; b,, b, ; m, p) sin (m - k) $ 

when i = 2 .  

+gtj(R; b,,b,; m,P) cos(m+k)$, 

+g$(R; b,, b,;  m,P) sin (m+k) q5, 

( 1 7 )  

I H#)(R ,  $, z ;  b,, b,; m) = 

Here k = 1 for i = 3 o r j  = 3 and k = 2 otherwise. The derivation of these formulas 
is both lengthy and non-trivial. A brief description will be given in the Appendix. 

2.4 .  The mixed weighted-residual and collocation technique 
For the three-dimensional case, we expand f iw)(y) in the form of Fourier series: 

m 

Z fkm(a) cosm6, 

fkm(W) sinm6, 

when k = 1 or 3 ;  
m-0 

when k = 2. 
m-1 

The collocation technique described in last subsection can also be used for this case, 
in principle. However, the chosen collocation points have to be located in more than 
just the meridian plane. The previous work (Ganatos et al. 1978) and our numerical 
tests show that the results for the force and torque on the sphere are sensitive to the 
configuration of the collocation pints. It is impractical to place a sufficient number 
of collocation points so that the distribution of the points is reasonably dense on the 
infinite plane wall S,- (even if it is truncated). Therefore, we shall use a weighted- 
residual technique for the plane wall S,- , but retain the collocation technique on 
the sphere surface S,. The collocation technique presents little difficulty on S,, 
whereas the weighted-residual technique would require a much greater amount of 
numerical integration on S,. 

The weighted-residual technique is based on the idea that the no-slip conditions 
should be satisfied not at  discrete boundary points, but rather on the continuous 
boundary in the sense of weighted averaging. In our present problem the no-slip 
conditions (1 16)  on S,  - can be written as follows : 

Vi(r,q5,0) = 0, when R 2 1 ,  0 < $ < 2n.  (19a) 

Choose a family of weight functions wtZ(@), 1 = 0 , 1 , 2 ,  .... Now multiplying (19a) by 
one of the wiz(q5) and integrating it over q5 from 0 to 2n ,  we have 

In principle, we may also perform a similar weighted averaging in the R-direction. 
However, we shall not do this here because it would require an excessive amount of 
numerical integration. Instead, we choose a number of values R,, as we did for the 
axisymmetric case, and require that (19b)  should be satisfied for these discrete R,, 
i.e. 

V;(R,, q5,O) wcz(q5) d@ = 0, n = 1 , 2 , 3 ,  .. ., N,. (19c )  s:" 
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Thus the no-slip conditions are satisfied at discrete rings on S, - , in some average 
sense. In this work we choose 

[ coslQ,, 

1 sinlqi, 

when i = 1 or 3; 

when i = 2. 
WiZCQ,) = 

One advantage of such a choice is to make use of the orthogonality of trigonometric 
functions in evaluating the integrals in Q, of terms like Hg)(R,  Q,, z ;  b,, b,; rn) as 
given by (17 ) ,  thus avoiding a lot of numerical integration. However, the Bg)n(r, 8, @), 
Cg)n(r ,8 ,@) and Eg)n(r, 8,  @) terms in the expression (9a )  for Vi(x)  have to be 
integrated over Q, numerically since the relationship between @ and Q, is not 
straightforward for the three-dimensional case. 

After applying the no-slip conditions ( l l a )  to M, discrete points on Sp and 
applying the weighted averaging conditions (19c) to N ,  discrete rings on 8, - with 
M, weight functions chosen, we have (for i = 1,2,3)  

n 

C Z [Bmn Bg)n(aj @ p )  + Cmn Cg)n(a, op,  Q , p )  +Em,  E:)&, eP, QP)] 
n-1 m-0 -+ 

M I  terms 

where I 2 when1=0, i =  1 or3;  
"iz = { 1 when1 ?=O;  

I ( 2 0 4  
0 when s < 0, 
1 w h e n s 2 0 ;  

IF(R,Z) = AP)g$(R; &- l ,EB;  Z,3)+BP)giqi(R;ffn_l,l?,; 1,2) 

+Cp)g$(R;  l?n-l ,Rn; 1,l). (20e) 

Here A?), BF) and Cp) are defined by (14); by (13); g$,  9:. and g$ by (17).  In  
(20a, b ) ,  the Lamb series is truncated to M ,  terms. Note that BPi(r, 8, @) = 0 so that 
the sequence in which the terms are taken is Col, E,,, B,,, C,,, Ell ,  C,,, Eo2, B,,, 
C,,, E,,, B,,, .... The term f,, does not appear since sinmQ, = 0 when m = 0. The 
B$)n,(R,), C$)nz(Rq) and EE)nz(Rp) represent the weighted integrals of B$)n(a, 8, @), 
Cg)n(a, 8, @) and B$)n(a, 8, @) over Q, and have to be evaluated numerically: 

BCi) mnl ( R )  = [oz' B$)n(r, 8,  @) wi,(Q,) dQ,, 
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r311 

where (R, #,O)  = (r, 8, @) with R = const. is a ring in the plane wall and wil($) is 
given by (19d). 

Equations (20a, b) constitute N ,  = 3M1 + (3M, - 1 )  N ,  equations, which can be 
solved for N ,  unknowns: B,,, C,,, Em, and fim(Rq).  The force and torque are then 
found from (lOa, b) .  

3. Axisymmetric solutions 
Solutions will be presented for two axisymmetric cases: (i) the sphere moving along 

the orifice axis in a quiescent fluid; (ii) Sampson's flow past a stationary sphere. Due 
to the axial symmetry, F, = Ty = 0 in (2).  To compare the results with Dagan et al. 
(1982 b) ,  we redefine the force correction factor for t.he axisymmetric cases as follows : 

F, = 61rpa( U, F ;  + V,, &), 

is the flow velocity at  the centre of the orifice opening. 
On the sphere surface SP the collocation points are selected according to the second 

scheme by Dagan et al. (1982b), i.e. for a given even number M I ,  taking 
8 = ( i - 1 )  (180°/(M,-2)) for i = 1,2,  ..., MI-1 and then replacing 0", go", 180' by 
0" + 6, 90" - 6,  90" + 6 and 180" - 6 to avoid the singularity of the coefficient matrix 
in (15a, b). On the plane wall S,- the collocation points are unevenly placed so that 
the concentrated distribution near R = 1.0 may better describe the sharp changes 
in the wall stresses near the orifice edge. Extensive numerical tests were conducted for 
convergence of the solution as MI, N,,  6 and R, vary. It is found that (i) 6 = 0.01' 
can secure convergence to five significant digits of both F ;  and p: for all spacings 
and radii; (ii) for most cases M I  = 6-18 is sufficient to give five-digit accuracy, but 
for the worst case (a  = 10.0, zo/a = 1.1) M I  = 28 can give only three-digit accuracy; 
(iii) for most cases N ,  = 20-30 can yield four- or five-digit accuracy, but for the same 
worst case N2 = 50 can give only three digits; (iv) it is adequate to choose the 
truncation distance R, as equal to twenty times either a or zo, whichever is larger. 
The detailed tests are summarized in Yan (1985). 

The truncation of the 8,- plane can be justified by the rapid decay off,(@ with 
the increase of 8, as observed for a medium-sized sphere (a  = 0.5) in figure 2. 
Remember that j ,(w) represents the normal stress difference across the plane wall 
due to the disturbance field V'(y) (see (8a ) ) .  When the pressure difference 
Ap = -pa $; 0, the total normal stress difference across the wall is equal to the 
sum off,(8) and the normal stress difference due to Sampson's flow (in the absence 
of the sphere). For reference, the later for Ap = 3.0 is also plotted in the figure. Note 
that the presence of the sphere at  different distances x ,  from the plane of the orifice 
opening induces different fluxes q through the orifice (Dagan et al. 19823, p. 165). For 
the purpose of comparison, values of U (the translation velocity of the sphere) or Ap 
are chosen such that all the curves in figure 2 are presented for the same volumetric 
flux (q = 1.0). It is seen that when a is large, f,(8) decays in proportion to a t  least 
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J? 

FIQURE 2. The typicalf,(E) for axisymmetric cases (a = 0.5). (a) Sphere moving in quiescent fluid: 
0 ,  zo/a = 1 . 1  ( U  = 0.75);  0, 1.5 (0.87); ., 2.0 (1.06); 0, 4.0 (2.50); A, 10.0 (20.0); 0, Sampson 
(Ap = 3.0, no sphere). (b) Sphere held fixed in Sampson's flow: 0 ,  z o / a  = 1.1 (Ap  = 6.54); 0, 1.5 
(5.13); ., 2.0 (4.22); U, 4.0 (3.17); A, 10.0 (3.00); 0, Sampson (Ap = 3.00, no sphere). 

the fourth power of (l/8). In  either the case of a sphere moving in quiescent fluid 
or a sphere held fixed in Sampson's flow, the induced normal stress difference If,(a)l 
due to the disturbance of the sphere is several orders of magnitude smaller than the 
stress difference due to Sampson's flow for all values w 2 1.0. When the sphere is 
held fixed in Sampson's flow, the singularity of the total normal stress at  the orifice 
edge (8 = 1.0) should behave essentially like that due to the Sampson flow alone, 
whose normal wall stress can be derived from (7 a ,  c) as follows : 

+ tan-1 (82 - 1 )+) , when 8 > 1 .O, x = 0. (22) 
1 

r,, = k 3  ( 
7I ( 8 2 - 1 ) 2  

When the sphere moves in quiescent fluid, although the local singularity off,(8) 
might not be adequately described by the piecewise quadratic interpolation in (14), 
the numerical results show that the substitution of (14) into the integral equations 
does yield the correct hydrodynamic force. 

In tables 2 and 3, the force correction factors FL and p: are compared with the 
solutions given by Dagan et al. (19823) and by Davis (1983). Dagan et al. (1982b), 
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10.0 

5.0 

2.0 

1.5 

1.1 

a = 0.1 a = 0.5 a =  1.0 a = 5.0 a = 10.0 

- 1.0723 -1.1246 -1.1259 -1.1251 
- 1.0596 -1.1240 -1.1262 -1.1262 
- 1.0730 -1.1248 -1.1259 -1.1261 

- 1.0666 - 1.2638 - 1.2814 - 1.2850 
- 1.0532 - 1.2509 - 1.2795 - 1.2850 
- 1 .OM7 - 1.2618 - 1.2804 - 1.2837 

- 1.0540 - 1.4264 - 1.8654 -2.1194 
- 1.0505 -1.3919 - 1.8058 -2.1200 
- 1.0542 - 1.4843 - 1.8396 - 1.9981 

- 1.0523 - 1.4205 - 2.1042 -3.153 
- 1.0504 - 1.3882 - 2.0334 - 3.1535 
- 1.0526 - 1.4872 - 2.0863 - 2.5059 

-1.0513 - 1.3946 -2.360 - 8.47 
- 1.0503 - 1.3777 - 2.2867 -8.94 
-1.0516 - 1.4593 -2.2659 -2.8380 

TABLE 2. The axisymmetric solution (comparison of P i )  
(a) the present work; (b) Dagan et al. (19823); ( c )  Davis (1983) 

-1.1253 
-1.1262 
- 

- 1.2822 
- 1.2851 
- 

- 2.1250 
- 2.1248 
- 

-3.185 
-3.1983 
- 

- 10.4 
- 10.5 
- 

a = 0.1 

0.534 39 
0.527 97 
0.534 85 

0.84852 
0.837 96 
0.84824 

1.0069 
1.0036 
1.0068 

1.022 4 
1.0206 
1.022 5 

a = 0.5 

0.043079 
0.043026 
0.043 220 

0.17298 
0.16986 
0.175 54 

0.651 55 
0.62720 
0.70094 

0.79839 
0.77576 
0.81957 

a = 1.0 

0.011 102 
0.01 1 094 
0.01 1 139 

0.049 182 
0.048597 
0.050 131 

0.3593 
0.327 54 
0.45763 

0.568 
0.483 20 
0.82430 

a = 5.0 

0.000448 01 
0.000448 14 
0.000449 9 

0.002052 7 
0.0020285 
0.002 092 4 

0.022 2 
0.022291 
0.030870 

0.069 
0.0863 
0.10522 

a = 10.0 

0.000 11204 
0.000 1 12 07 

0.000 5 12 6 
0.000507 74 

- 

0.005 65 
0.0056546 

0.018 
0.0185 

1.1 (a) 1.031 9 0.91 163 0.753 0.24 0.20 
1.0310 0.90571 0.640 18 0.191 0.149 
1.032 1 0.88548 1.068 1 0.42048 - 

(b )  
(4 

TABLE 3. The axisymmetric solution (comparison of Ss) 
(a) the present work; (b) Dagan et al. (19823); ( c )  Davis (1983). 

using the multipole-series technique, satisfied the no-slip conditions exactly through 
analytic methods on S,- and numerically through the collocation method on S,, 
whereas in the present work we have used the collocaton method on both the 
boundaries. Therefore, in principle, the former should be more accurate. The present 
results differ from those of Dagan et al. by one to a few percent for most of the cases 
in the tables, a reasonable accuracy for the integral-equation method in general. The 
solution by Davis was obtained for a Stokeslet and can be taken as an approximation 
for a small sphere, correct to a3. It is seen in the tables that the results by Davis, 
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z o l a  a = 0.1 a = 0.25 a = 0.5 a = 0.75 a = 1.0 

1 .1  - 1.0513 -1.1448 - 1.3946 -1.9234 -2.360 
1 .o -1.0511 -1.1424 - 1.3856 -1.9438 -2.457 
0.5 - 1.0503 -1.1327 - 1.3364 - 1.9163 - 3.332 
0.1 -1.0501 -1.1307 - 1.3116 - 1.8194 - 10 
0.05 -1.0501 -1.1305 - 1.3107 - 1.7888 - 
0.0 - 1.0501 -1.1291 - 1.3104 - 1.7768 - 

TABLE 4. The axisymmetric solution (results of F: for zo/a < 1.1)  

%/a  a = 0.1 a = 0.25 a = 0.5 a = 0.75 a =  1.0 

1 .1  1.0319 1.0209 0.91 163 0.8082 0.753 
1 .o 1.0338 1.0314 0.937 79 0.8964 0.794 
0.5 1.0408 1.0705 1.046 0 1.0531 0.957 
0.1 1.0431 1.0837 1.088 8 1.230 1.2 
0.05 1.043 1 1.0842 1.0903 1.249 - 
0.0 1.04N 1.0843 1.0908 1.255 - 

TABLE 5. The axisymmetric solution (results of ps for zo/a < 1 . 1 )  

while having a comparable accuracy with ours for small particles (a < 1 . O ) ,  deterio- 
rates with the increase of the sphere radius a as the orifice is approached. 

Although the solutions by Dagan et al. (19823) are more accurate in principle, their 
range of validity is limited to zo/a 2 1 . 1  only. Their method cannot treat the case 
in which the sphere intersects the orifice opening. The latter case is important in 
treating pore-entrance phenomena such as the fine structure of osmosis a t  a pore 
entrance (Yan et al. 1986) and the collection efficiency of particles in nucleopore filters 
(Wang et al. 1986). The latter may be critically dependent on the values of Fi  and 
F: in the immediate vicinity of the pore opening. Our present method applies to this 
case without difficulty. In tables 4 and 5 typical results for the force correction 
factors F ;  and PE are presented for 0 < zo/a < 1 . 1 .  The different significant digits 
reflect the different accuracy of convergence. No convergence is reached within 
reasonable computation efforts for a = 1.0 and zo/a < 0.05 (i.e. almost choking of the 
orifice opening by the sphere). 

The neutrally buoyant velocity of a sphere carried by the flow towards the pore 
can be obtained by requiring a zero drag force on the sphere, i.e. F, = 0 in (21 a) .  Then 

The results from this equation are plotted for zo/a = 0-1.1 in figure 3. At zo/a = 1.1 
the present solution matches that by Dagan et al. (19823), as shown by the 
arrowheads on the right side of the figure. For comparison, the figure also indicates 
the zero-drag velocity of a sphere carried axisymmetrically by the flow in an infinite 
circular cylindrical tube (Haberman & Sayre 1958), shown by the arrowheads on the 
left side. It is evident that the present results for zo = 0 are quite close to these 
limiting values, in spite of our neglecting the pore length. This confirms our earlier 
conjecture that the pore length itself has only a minor effect on the sphere-pore 
entrance interaction. 
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FIGURE 4. The collocaton points on the sphere surface for the three-dimensional case. 

4. Three-dimensional solutions 
For most of our three-dimensional calculations the number of collocation points 

on the sphere surface S, was chosen as M I  = 4 and the position of points was selected 
as shown in figure 4, according to Ganatos et al. (1978). The number of collocation rings 
on the plane wall S,- was chosen to lie in the range of N ,  = 10-18. The practical 
consideration of the computation time and accuracy has restricted M ,  < 8 in our 
calculations. With M ,  = 4, M ,  = 8 and N2 = 10, the number of simultaneous 
equations to be solved is N ,  = 242. One run with this value of N ,  requires 16 minutes 
of CPU time on an IBM 3081 computer and a memory of 683 KB. 

There were previously no three-dimensional solutions for the twelve hydrodynamic 
coefficients in (2) for a finite particle near an orifice. Miyazaki & Hasimoto (1984) 
derived a solution for a translating Stokeslet near an orifice, which can be used as an 
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FIGURE 5. Comparison of results along the orifice axis (xo = 0) between the present solution 
(0, --F>'; A, F:") and Miyazaki & Hasimoto (1984) (-). 
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0 0.5 
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1 .o 

FIGURE 6. Comparison of results at the orifice opening (z,, = 0) between the present solution 
and Miyazaki & Hasimoto (1984). Symbols as figure 5. 

approximation for a small particle, correct to the order of t'he particle radius a.  In  
figures 5 and 6, the present solutions for both F$ and F,", for a = 0.1 are compared 
with those by Miyazaki & Hasimoto for either xo = 0 (along the orifice axis) or zo = 0 
fat the orifice opening). The agreement is very good. 

Numerical tests for the convergence were conducted for a wide range of M I ,  M ,  and 
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FIGURE 7. The results for F> z, the three-dimensional cases, a = 0.5. x , zo/a = 0;  A, 0.5; 
+, 1 . 1 ;  0, 1.5; ., 2.0; 0,  4.0; A, 10.0. 
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FIQURE 8. The results for FZ, the three-dimensional cases, a = 0.5. Symbols as figure 7.  

N ,  (the details can be found in Yan 1985). To secure the convergence, the required 
number M ,  of harmonics increases as the sphere goes outward from the orifice axis. 
When the sphere centre is within a few orifice radii of the orifice axis and not very 
close to the plane wall X, - , convergence to at least three significant digits was 
reached for the four major correction factors (Q x ,  3’; *, & and TL) and to at  least 
two digits for the rest of the factors, which are by themselves small. However, when 
the wall 8, - was approached, the convergence deteriorated. This is because the 
description of the very rapid change in stresses for the small locul area of the thin 
lubrication layer requires very high-order (M,) harmonics when the sphere-wall 
spacing is small. 

Restricted by excessive computation time, accurate three-dimensional solutions 
are presented only for a medium size sphere (a = 0.5) .  These solutions are valid in 
a region not far off-axis and not very close to the orifice wall. Despite the above 
limitations, these solutions for a finite particle provide insight into the three- 
dimensional spatial variation of all the twelve force and torque correction factors 
as defined in (2). The region of validity of these solutions is of primary importance 
for many pore-entrance phenomena that could not be treated by the earlier approxi- 
mate theory of Dagan et al. (1983). Based on an analysis of the behaviour of these 
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FIGURE 9. Three cases of the sphere-to-orifice relative positions. (a) 0 < x < R,; (3) x = R,; 
(c )  x > R,. 

z o l a  

1.1 
1.5 
2.0 
4.0 

10.0 
co 

FiO 
a/R, = 0.1 a/R, = 0.5 a/R, = 1.0 a/R, = 5.0 a/R, = 10.0 a/R, - = co 
-1,0503 -1.3777 -2.2867 -8.94 - 10.5 - 11.4592 
-1.0504 -1.3882 -2.0334 -3.1535 -3.1983 -3.2054 
-1.0505 -1.3919 -1.8058 -2.1200 -2.1248 -2.1255 
-1.0519 -1.3091 -1.3655 -1.3801 - 1.3802 - 1.3802 
-1.0596 -1.1240 -1.1262 -1.1262 -1.1262 -1.1262 
-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 

F% 
%/a a/R, = 0.1 a/R, = 0.5 a/R, = 1.0 a/R, = 5.0 a/R, = 10.0 
1.1 1.0435 1.1797 1.4148 5.97 18.2 
1.5 1.0436 1.2121 1.5704 3.91 4.18 
2.0 1.0437 1.2544 1.6377 2.2514 2.2675 
4.0 1.0457 1.2693 1.3435 1.3623 1.3625 

10.0 1.0559 1.1187 1.1205 1.1208 1.1208 
co 1 .oOOo 1 .om0 1 .oooo 1 .om0 1 .oooo 

TABLE 6. The axisymmetric solutions F:, and FZ, 
Sources: F;, for a/R, = co, Brenner (1961). All others, Dagan et al. (19823). 

numerical solutions, we are able to propose reasonable interpolation formulas, which 
can be applied over a wide range of particle sizes and for an arbitrary particle positon 
outside the orifice. 

In  figures 7 and 8, the accurate numerical results for F: and FZ are denoted by 
different symbols for the range zo/a = 0-10 and a = 0.5. Here F: is defined as 
FS, = ( V,,/ q) p: for convenient comparison with other solutions, and V,, and V: 
are given by (21b) and (7b)  respectively. In  these and the following figures, the 
symbols are plotted only for the range of xo where our solutions converge well within 
the selected values of M I ,  M ,  and N,.  The solid lines in these figures represent the 
approximate interpolations using known solutions for the axisymmetric moticn of a 
sphere near an orifice or a disk (Dagan et al. 19823; Dagan, Pfeffer & Weinbaum 
1982). The interpolation technique was proposed by Yan et al. (1986) and is described 
in detail in Yan (1985). As shown in figure 9, three cases are considered with the 
projection AS of the sphere centre lying ( a )  inside, (b) on the edge and ( c )  outside the 
orifice. In  case (a ) ,  the local radius p from S to the pore edge varies with angle @. 
The axisymmetric values of F &  and FZo, as summarized in table 6 (as functions of 

3 FLM 174 
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zola 
1.1 
1.5 
2.0 
4.0 

10.0 
00 

F:, 
a/R,  = 0.0 a/R, = 0.1 a/R,  = 0.5 a/R,  = 1.0 a/R, = 5.0 a/R,  = 10.0 

-11.4592 -11.4593 -11.559 -11.784 -3.04 - 1.56 
-3.2054 -3.2055 -3.2952 -3.0812 -1.2643 -1.1046 
-2.1255 -2.1258 -2.1798 -1.8936 -1.1354 -1.0620 
-1.3802 -1.3818 -1.3272 -1.1848 -1.0350 -1.0172 
-1,1262 -1.1305 -1.0563 -1.0287 -1.0057 -1.0028 
- 1 .oooo - 1 .oooo - 1 .om0 - 1 .om0 - 1 .0000 - 1 .0000 

C, 
a/R, = 0.1 a/R, = 0.5 a/R, = 1.0 a/R,  = 5.0 a/R, = 10.0 

1.1 3.4562 3.7436 3.4298 1.3188 1.1301 
1.5 2.551 1 2.6614 2.2719 1.2141 1.1008 
2.0 2.0315 2.0418 1.7207 1.1344 1.0467 
4.0 1.4080 1.3239 1.1850 1.0361 1.0178 

10.0 1.1350 1.0570 1.0291 1.0058 1.0029 
1 .om0 00 1 .om0 1 .oooo 1 .oOOo 1 .0000 

TABLE 7. The axisymmetric solutions Pi, and F& 
Sources: Fb, for a/R, = 0,  Brenner (1961). All others, Degan et al. (1982). 

the ratio a/R,  of the sphere to pore radii), are averaged over @ and these average 
values are taken as our approximation. That is 

In  case (b ) ,  for the range of 0 < @ < @, the sphere sees a disk of infinite size rather 
than an orifice. Therefore the axisymmetric solutions F;, and F;, for a sphere near a 
disk, as summarized in table 7 (as functions of the ratio a / R ,  of the sphere to disc 
radii), are used for this range of @ in the averaging process, namely 

In case ( c ) ,  the sphere sees a disk of R, = co for 0 < @ ,< /? and a disk of radius p for 
/? < @ < R .  However, for /? < @ < R the solid wall beyond the far edge of the orifice 
cannot be ignored. To account for this, we give the orifice effect, Fi2 or FE2 as 
evaluated in (26), a weight of Ro/x  and the disk effect, as averaged over /? < @ < R ,  

a weight of (1 - R,/x). Here x is the distance between point S and the orifice centre 
0 (figure 9). Thus, 

Interpolation formulas (24)-(27) yield correct limiting values when xo -+ co. As can 
be seen in figures 7 and 8, the interpolations (solid lines) agree reasonably with the 
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- F$,z - F$,z 
(Goldman 

zola a = 0.1 a = 0.5 a =  1.0 a = 5.0 et al. 1967) 
10.0 1.05 1.05 1.05 1.05 1.06 
4.0 1.09 1.13 1.13 1.13 1.15 
2.0 1.10 1.29 1.30 1.30 1.42 
1.5 1.10 1.39 1.44 1.45 1.63 
1.1 1.10 1.50 I .69 1.78 2.32 

- Ti0 - T i m  
(Goldman 

zo/a a = 0.1 a = 0.5 a =  1.0 a = 5.0 et al. 1967) 
10.0 1 .oo 1 .oo 1 .oo 1 .oo 1 .oo 
4.0 1 .oo 1 .oo 1 .oo 1 .oo 1.01 
2.0 1 .oo 1.01 1.02 1.02 1.06 
1.5 1 .oo 1.01 1.03 1.06 1.13 
1.1 1 .oo 1.01 1.06 1.15 1.49 

a = 5.0 ZO/@ a = 0.1 a = 0.5 a = 1.0 

10.0 0.0008 0.0013 0.0013 0.0013 
4.0 0.0013 0.0086 0.0090 0.0090 
2.0 0.0008 0.0290 0.0414 0.0452 
1.5 0.0007 0.0417 0.0774 0.0977 
1.1 0.0005 0.0510 0.1536 0.2573 

TABLE 8. The axisymmetric and far-field values of F >  z, TL and F f ,  

- F L  
(Goldman 

et al. 1967) 

0.0000 
0.0090 
0.0092 
0.0229 
0.1270 

accurate numerical results (symbols) for a = 0.5. Thus, it confirms the plausibility 
of the interpolation used The interpolation formulas presented herein can be applied 
for particle sizes in the range 0.1 ,< a < 10.0 and for an arbitrary particle positon 
for zo/a 2 1.1. 

For F$ and TL we cannot use the interpolation technique just described because 
the corresponding axisymmetric solutions for a sphere near a finite disk are not 
available. However, it is found that the accurate numerical results for a = 0.5 may 
be well approximated by the following formulas : 

where the subscript 0 denotes the axisymmetric value for a sphere near an orifice, 
which is calculated by the present method, and the subscript 00 denotes the far-field 
value for a sphere near an infinite solid plane wall (Goldman, Cox & Brenner 1967). 
Both these values are given for zo/a = 1.1-10.0 and a = 0.1-5.0 in table 8. The 
approximate results for a = 0.5 using these formulas are plotted by lines in figures 
10 and 11 with the symbols denoting the accurate numerical solutions. The very close 
agreement for a = 0.5 suggests that (27) might be useful also for other particle sizes 
since the limiting values F2;, F$,Z etc. have taken into consideration the effect of 
the particle size, as shown in table 8. 

3-2 
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-Fy 

a = 0.5 

2.0 r x i 5  z./a = 1.1 

1.2 4.0 n 
I 

1 .o I 10.0 3 
0 0.5 1 .o 1.5 2.0 

XO 

FIGURE 10. The results for F ;  z, the three-dimensional cases, a = 0.5. Symbols as figure 7 .  

a = 0.5 
1.30 r 

1.25 

1.20 

1.15 - 

1.10 - 

- 

- 
- T ;  

0 0.5 1 .o 1.5 2.0 

*O 

FIGURE 11.  The results for Tk, the three-dimensional cases, a = 0.5. Symbols as figure 7. 

u = 0.5 

0.10 zJa = 

0.08 r 1.1 I 
Ft.2 

1.5 
2.0 

0.06 

0.04 4.0 
10.0 

0.02 

0 0.5 1 .o 1.5 2.0 
XO 

FIGURE 12. The results for F ;  z ,  the three-dimensional cases, a = 0.5. Symbols as figure 7 .  

Comparison of figures 7 and 8 with figures 10 and 11 shows that while F$’ and 
FZ change substantially between the axisymmeytric values for xo = 0 and the far-field 
solutions for large x,,, F: and TL are relatively insensitive to the radial position xo 
of the sphere centre. This can be explained by the fact that the translation normal 
to the wall or the Sampson flow induces a much larger flow through the orifice than 
the translation parallel to the wall or the rotation so that the presence of the orifice 
opening has a greater influence on F;% and F:.  
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zo/a 

10.0 
4.0 
2.0 
1.5 
1.1 

10.0 
4.0 
2.0 
1.5 
1.1 

10.0 
4.0 
2.0 
1.5 
1.1 

10.0 
4.0 
2.0 
1.5 
1.1 

a = 0.1 

0.0023 
0.0055 
0.0039 
0.0031 
0.0024 

0.0001 
0.0006 
0.0008 
0.0009 
0.0009 

0.061 
0.076 
0.049 
0.038 
0.029 

0.006 
0.018 
0.022 
0.023 
0.024 

a = 0.5 

F>! 
0.0000 
0.0016 
0.0144 
0.0266 
0.0413 

-FL 
0.0000 
0.0003 
0.0035 
0.0061 
0.0092 

R I  

0.002 
0.018 
0.051 
0.064 
0.072 

- pi1 
0.000 
0.005 
0.025 
0.035 
0.046 

a = 1.0 

0.0000 
0.0001 
0.0026 
0.0060 
0.0096 

0.0000 
0.0001 
0.0024 
0.0092 
0.0324 

0.000 
0.003 
0.010 
0.01 1 
0.010 

0.000 
0.001 
0.011 
0.022 
0.035 

a = 5.0 

o.ooO0 
0.0000 
0.0000 
0.0003 
0.0017 

0.0000 
0.0000 
0.0000 
0.0002 
0.0014 

0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.001 

TABLE 9. The values of F> z ,  F:, p:  and pi a t  xo = 0.25 

a = 0.5 

0.25 r 
0.20 1 / z,/a = 1.1 

2.0 0.10 
4.0 

0.05 10.0 

0 0.5 1 .o 1.5 2.0 
*O 

FIQURE 13. The results for F:, the three-dimensional cases, a = 0.5. Symbols as figure 7. 

Our numerical solutions show that F> z ,  F i ,  F> and TL are of the order of unity 
whereas the others are one order of magnitude smaller. The accurate numerical results 
for F$ are presented for a = 0.5 and z,/a = 1.1-10.0 by symbols in figure 12 with 
the solid lines denoting the approximate interpolation formula 

Ft,  z = [0.473(z0/a) + 0.01721 F i t  x 
x4 +0.43(z0/a) 

where F > t  represents the value of F> at 5, = 0.25. The values for F$,Z for a = 0.1-5.0 
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a = 0.5 

0.14 

0.12 

0.10 

-FE 0.08 

0.06 
0.04 

0.02 

0 
XQ 

FIQURE 14. The results for FL, the three-dimensional cases, a = 0.5. Symbols as figure 7, 

a = 0.5 

0 0.5 1 .O 1.5 2.0 
xo 

FIGURE 15. The results for P", the three-dimensional cases, a = 0.5. Symbols as figure 7. 

are given in table 9. This hydrodynamic coefficient represents the cross-coupling 
effect, i.e. the lateral force in the x-direction generated by the sphere translation in 
the z-direction. When the sphere is located at the orifice axis (xo = 0) or far away from 
the orifice (xo+ co), F$ vanishes. It is seen from the figure that F$ is negligible 
everywhere except in the immediate vicinity of the orifice edge (xo x 1.0 and 

Figures 13 and 14 show the effects of the sphere rotation on the force components 
in the x- and z-directions respectively. The accurate numerical results (symbols) for 
a = 0.5 and zo/a = 0.5-10.0 are well approximated by the interpolation formulas 
(solid lines) 

zo z 1.0). 

0 . 3 0 ( ~ , / ~ ) - ~ . ~  x3 + Fie- F' 
F ;  = Fi,+ 

x4+1 

(49.536(~,/a)-~.~ +0.0225) FE, x3 
x5+ 2 . 1 5 ( ~ , / a ) - ~ . ~  

FZ = 

where the subscript 0 denotes the axisymmetric value for a sphere near an orifice 
(xo = 0) and subscript 03 the far-field value for a sphere near an infinite solid plane 
wall. The subscript 1 again denotes the value a t  xo = 0.25. F i 0  and F& are listed in 
table 8 and F:, in table 9, for a = 0.1-5.0 and zo/a = 1.1-10.0. Here Fim is taken from 
Goldman et al. (1967) and the other coefficients are calculated using the present 
numerical method. It is observed from these figures that the interpolation curves for 
Fj approach the correct limiting values when xo --f 0 or xo + co and FL is insignificant 
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a = 0.5 
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1 I A I  I A 1 

0.5 1 .O 1.5 2.0 0 

XO 

FIGURE 16. The results for F z ,  the three-dimensional cases, a = 0.5. Symbols as figure 7.  

except in the neighbourhood of the orifice wall (zo/a w 1.0); one also observes that 
Fi vanishes when xO+O or zo+ 00 and it is negligible except in the immediate 
vicinity of the orifice edge (zO/ax 1.0 And xo z 1.0). 

Figures 15 and 16 show the effects of the flow through the orifice on the force and 
torque exerted on a stationary sphere. The accurate numerical results (symbols) for 
a = 0.5 and zo = 0.5-10.0 are well approximated by the interpolation formulas (solid 
lines) 

[ 3 . 6 ( ~ ~ / a ) ~ - *  +0.225] pzl x 
x2 +0.9(z0/a)0~9 

[12(zo/a)-~+0.0625] 

P;  = 

T; = 
x3 -I- 3 ( z 0 / a ) 3  

where the subscript 1 denotes the value a t  zo = 0.25 and pil and pil are presented 
for a = 0.1-5.0 and zo/a = 1.1-10.0 in table 9. It is seen from these figures that both 
pl and pi vanish when zo+O or xo+ co and they are insignificant except near the 
orifice edge (xo w 1 .O and zo/a w 1 .O). 

The rest of the twelve force and torque correction factors can be found through 
the reciprocal theorem (Happel & Brenner 1973, p. 85) as follows: 

X = Ft ,  X '  z Tt ,  Y X = fFi, Tty' z = $F:. (32) 

In conclusion, all the interpolation curves presented herein agree remarkably well 
with the accurate numerical solutions for a = 0.5 in the range of validity of these 
solutions. The interpolation curves approach correct limiting values when zo -+O or 
zo+0o and also account for the effect of the particle size through the coefficient 
values given in tables 6-9. Therefore, one can reasonably assume that (24)-(31) 
provide good approximations for a wide range of particle sizes when zo/a 2 1.1 .  Since 
these interpolations require very little computation time and no other approximate 
solutions are presently available, the techniques presented herein should be of 
practical value. 

5. Concluding remarks 
In this paper we have proposed a combined multipole series representation and 

integral-equation method to treat the problem of hydrodynamic interaction of a 
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finite sphere with the entrance geometry of a zero-thickness orifice. This combined 
method takes advantage of the flexibility of the integral-equation method in treating 
a complicated geometry and reduces its disadvantages of lower accuracy and greater 
computation time by using the multipole series representation for the disturbance 
on the sphere. This combined approach provides a very substantial improvement in 
accuracy and computational time over a direct numerical solution of the integral 
equation (8) provided the velocity has a smooth distribution on the sphere surface 
(see footnote $2.2) .  

For the axisymmetric case, the present method has successfully treated the 
difficult case of a finite sphere intersecting the plane of the orifice opening, which 
could not be treated by previous methods. For the three-dimensional case, the first 
accurate numerical solutions have been obtained for the twelve force and torque 
correction factors for a medium sized sphere a t  an arbitrary position within a few 
orifice radii from the orifice axis and not very close to the wall. Based on these 
solutions, approximate interpolation techniques have been developed, which can be 
used for the entire flow field for zo /u  2 1.1 and for a wide range of particle sizes. This 
greatly enhances the usefulness of the present solutions. 

The purpose of the present work is to evaluate the hydrodynamic force and torque 
on the sphere in the presence of the orifice. Restricted by the excessive computation 
cost, the lower-order harmonics cannot adequately describe the details in the thin 
lubrication layer (when the sphere is very close to the orifice wall) or the local singular 
behaviour of the stresses a t  the orifice edge. However, the induced stresses due to 
the disturbance of the sphere proved to be several orders of magnitude smaller than 
those due to Sampson’s flow in the absence of the particle and the present scheme 
proved to yield correct results for the hydrodynamic force and torque. 

Because of its flexibility, the combined method proposed herein is a very 
promising technique for treating more complicated geometries, such as the entrance 
of a particle into a finite-length pore or the entrance problem for a periodic array 
of pores. Two important considerations in any attempt to improve the present method 
will be how to increase the accuracy and how to reduce the computation time. 

The authors wish to thank the National Science Foundation for supporting this 
research under grant ENG82-00301 and The City University of New York, Computer 
Center for the use of their facilities. The helpful discussions with Professors R. Skalak 
and A. Silberberg are appreciated. This work has been performed in partial fulfillment 
of the requirements for the Ph.D. degree of Z .  Yan from the School of Engineering 
of The City College of The City University of New York. 

Appendix. The evaluations of U$)(R, 4, z ;  b,, b, ;  m) 

If all the variables in ( I ~ c ) ,  defining H,V)(R,#,z;  b,,b,; m),  are written in the 
cylindrical coordinates (E,  $, z”), the inner integrals over 6 can be expressed in terms 
of the following integrals : 
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where 1 = m - 2 ,  m - 1 ,  m, m + l ,  m+2 ,  p = 1 ,  3 ;  A and B are given by 
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A2 = B2+R2+z2, 

B2 = 2BR.  

Here (R, q5, z )  is a fixed field point and (8,&, Z) is the variable point under integration. 
in ( A  1 )  in terms of a polynomial of cos 6, these 

integrals can be calculated as follows : 
By expressing the COB 14 or sin 

where 
i 1 

( - 1 )* 229 lT(l+ q )  
ao0= 1 ,  a - 

l q  - r (2q+l ) r (Z -q+1) ’  

Here r(z) is the Gamma function. The G ( q , p ,  k )  can be related to the complete elliptic 
integrals K ( k )  and E ( k )  of the first and second kinds through the recurrence formulas. 
These formulas are exact mathematically, but they turn out to be numerically 
unstable unless k is close to unity, say k 2 0.90. 

For k < 0.90, we find B2/A2 = k2 / (2 -k2 )  < 0.681 and thus can expand the 
denominator of (A 1) in a series of B2/A2 to obtain 

where 

(A 10) 
1 (21+4s+p-2)!!r(z+2s+1) -- 

POOP = 7 Pl+zs ,  1 ,  p - 2p+25 (21 + 4 4  ! ! r ( s  + 1 ) r(z + s + 1 . 

To explain the meaning of k ,  we can see from ( A  5 )  that k reaches the maximum 
at a = (R2+z2)i. If z = 0 we would have k = 1 at a = R,  a singularity for the 
integrals in (A 1) or (A 7) .  The values of k 2 0.90 correspond to the interval 
(( 1 - kc ) / (  1 + k,)) R < B < (( 1 + k c ) / (  1 - k,)) R for the case of z = 0, or to a smaller 
neighbourhood of a = (R2 + z2)i  for the case of z ?= 0. Here k ,  = (1 - (0.90)2)i. Outside 
such a neighbourhood we have k 4 0.90. If z 2 (2kJ0.90) R, the whole plane wall 
(1 < 

In the range of k < 0.90, we are also able to perform the integration over a in 
(16c) analytically by integrating (A 8) term by term with respect to 8. In the range 
of k 2 0.90, the integration with respect to a can also be performed analytically by 
expanding the complete elliptic integrals, relating to G ( q , p ,  k )  in ( A  4), in terms of 
its complementary modulus k’ = (1 - k2)4, if the collocation point is on the plane wall 
( z  = 0). However, if the collocation point is not located on the plane wall, the 

< co) would correspond to k < 0.90. 
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integration over 2 has to be performed numerically for the part where k >, 0.90. If 
an interval (b, b,) covers both the ranges of k < 0.90 and k 2 0.90, it should be divided 
accordingly and then appropriate formulas should be used in each of the subintervals. 
The detailed derivation and formulas can be found in Yan (1985). 

Numerical tests show that the algorithms listed herein can reduce the computation 
time for H $ ) ( R , $ , z ;  b,, b,; m) to a few thousandths of the time required by a 
numerical quadrature and give an accuracy to at worst lo-' for m = 0-7 and = 1-3. 
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